If the Boolean expression $\left( {p \oplus q} \right) \wedge \left( { \sim p\,\Theta\, q} \right)$ is equivalent to $p \wedge q$, where $ \oplus $ , $\Theta \in \left\{ { \wedge , \vee } \right\}$ , ,then the ordered pair $\left( { \oplus ,\Theta } \right)$ is
$\left( { \vee , \wedge } \right)$
$\left( { \vee , \vee } \right)$
$\left( { \wedge , \vee } \right)$
$\left( { \wedge , \wedge } \right)$
If $p, q, r$ are simple propositions with truth values $T, F, T$, then the truth value of $(\sim p \vee q)\; \wedge \sim r \Rightarrow p$ is
The negative of $q\; \vee \sim (p \wedge r)$ is
Negation of statement "If I will go to college, then I will be an engineer" is -
Negation of $(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$ is
The statement "If $3^2 = 10$ then $I$ get second prize" is logically equivalent to